Control Systems I

State Observers

Colin Jones

Laboratoire d'Automatique

State Estimation

Problem: Our controller is a function of the state, but we don't know the state.

Goal: Estimate the state from input and output measurements.

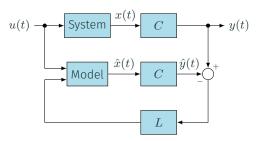
If \hat{x} is our estimate of the state and we simulate the dynamics

$$\dot{\hat{x}} = A\hat{x} + Bu$$

then $\hat{x} \approx x$. Noise and model error will always cause the estimate to diverge.

Solution: Feedback

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$



Outline

Observers

Reference Input

Integral Control

Observers

State Estimation Error Dynamic

Dynamics representing error between the true state and the estimated state is

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$= Ax + Bu - A\hat{x} - Bu - L(y - C\hat{x})$$

$$= A(x - \hat{x}) - L(Cx - C\hat{x})$$

$$= (A - LC)e$$

Idea: Choose L so that the error system is stable and $\hat{x} \rightarrow x$

How: Use pole placement exactly as in the control case

Observer Canonical Form

Observer Canonical Form

$$\dot{x} = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

Error dynamics are

$$A - LC = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} - \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -a_1 - L_1 & 1 & 0 \\ -a_2 - L_2 & 0 & 1 \\ -a_3 - L_3 & 0 & 0 \end{bmatrix}$$

with the simple characteristic equation

$$\det(sI - A + LC) = s^{3} + (a_{1} + L_{1})s^{2} + (a_{2} + L_{2})s + (a_{3} + L_{3}) = 0$$

Observer poles can be placed easily if system can be put in observer canonical form

Pole placement in observer canonical form

$$A - LC = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} - \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -a_1 - L_1 & 1 & 0 \\ -a_2 - L_2 & 0 & 1 \\ -a_3 - L_3 & 0 & 0 \end{bmatrix}$$

$$\det(sI - A + LC) = s^3 + (a_1 + L_1)s^2 + (a_2 + L_2)s + (a_3 + L_3)$$

Pole placement in control canonical form

$$A - BK = \begin{bmatrix} -a_1 - K_1 & -a_2 - K_2 & -a_3 - K_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\det(sI - A + KB) = s^n + (a_1 + K_1)s^{n-1} + (a_2 + K_2)s^{n-2} + \dots + (a_3 + K_3)$$

Observer pole placement is identical to controller pole placement if we replace (A,B) with $(A^\intercal,C^\intercal)$

Conversion to Observer Canonical Form

$$G(s) = \frac{7s^2 + 12s + 3}{s^3 + 2s^2 + 5s + 2} = \frac{Y}{U}$$

Divide by s^3 and solve for Y

$$Y = \underbrace{s^{-1}(7U - 2Y) + s^{-2}(12U - 5Y) + s^{-3}(3U - 2Y)}_{X_1}$$

$$sX_1 = 7U - 2Y + \underbrace{s^{-1}(12U - 5Y) + s^{-2}(3U - 2Y)}_{X_2}$$

$$sX_2 = 12U - 5Y + \underbrace{s^{-1}(3U - 2Y)}_{X_3}$$

$$sX_3 = 3U - 2Y$$

Conversion to Observer Canonical Form

$$G(s) = \frac{7s^2 + 12s + 3}{s^3 + 2s^2 + 5s + 2} = \frac{Y}{U}$$

Take inverse Laplace transform

$$y = x_1$$

 $\dot{x}_1 = 7u + 2y + x_2$ $= 7u + 2x_1 + x_2$
 $\dot{X}_2 = 12u - 5y + x_3$ $= 12u - 5x_1 + x_3$
 $\dot{X}_3 = 3u - 2y$ $= 3u - 2x_1$

Putting this together, we get observer canonical form

$$\dot{x} = \begin{bmatrix} 2 & 1 & 0 \\ -5 & 0 & 1 \\ -2 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 7 \\ 12 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

Ackermann's Estimator Formula

Goal Choose observer gain L for the system (A,C) so that the closed-loop system $\dot{e}=(A-LC)e$ has the characteristic equation $\alpha_e(s)$

$$L = \alpha_e(A)\mathcal{O}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

where $\alpha_e(A)$ is the desired characteristic equation evaluated at the matrix A

$$\alpha_e(A) = A^n + \beta_1 A^{n-1} + \beta_2 A^{n-2} + \dots + \beta_n$$

 ${\cal O}$ is the *observability matrix*, which plays the same role as the controllability matrix

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

Observability

Consider the system

$$\begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$$

which has the transfer function $G(s) = \frac{1}{s^2}$.

The states are the position and the velocity, but we're only measuring the velocity.

ightarrow Impossible to estimate the position and therefore this system is *unobservable*

An LTI system is **observable** if and only if we can place the poles of the error system, which can be done only if $\mathcal O$ is invertible

LTI system (A, C) is observerable if and only if the observability matrix is full rank

$$\operatorname{rank} \mathcal{O} = n$$

Duality and Matlab

The duality between controller pole placement and observer pole placement means that we can use the same tools

```
K = acker(A, B, pc)
K = place(A, B, pc)
```

```
Lt = acker(A', C', pe)
Lt = place(A', C', pe)
L = Lt'
```

where pc is the list of desired controller poles, and pe is the list of desired estimator poles

Pole Selection

Estimator pole selection is a tradeoff between sensor noise and transient response

- \cdot Faster estimator \rightarrow more sensor noise passed to controller
- \cdot Slower estimator \rightarrow slower transient response

Rule of thumb: Estimator poles should be faster than the controller poles by about 2-6 times

Example

Design estimator for

$$\dot{x} = \begin{bmatrix} -1 & 1.5 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Example

Design estimator for

$$\dot{x} = \begin{bmatrix} -1 & 1.5 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

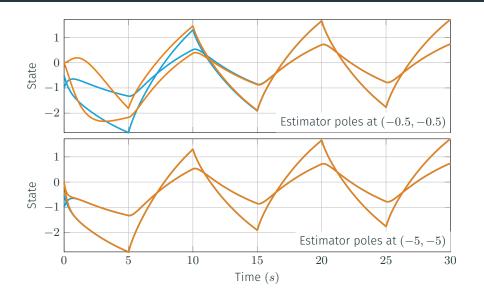
Place the observer poles about $2-3\times$ faster than the dominant poles of the system

$$\lambda_{\max}(A) = -0.18$$

Place two observer poles at 0.5

$$L = acker(A', C', -[0.5, 0.5])$$

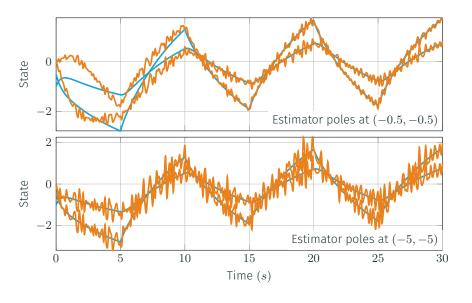
$$L = \begin{bmatrix} -2\\2.5 \end{bmatrix}$$



Blue: True state

Orange: Estimated state

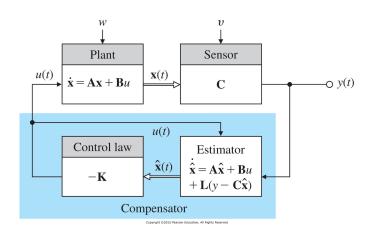
Example - Impact of Measurement Noise



Blue: True state

Orange: Estimated state

Combining Control and Estimation



What is the overall system?

Combining Control and Estimation

Full-state feedback controller

$$\dot{x} = Ax - BK\hat{x}$$
$$= Ax - BK(x - e)$$

where $e = x - \hat{x}$

Observer

$$\begin{split} \dot{\hat{x}} &= A\hat{x} - BK\hat{x} + L(y - C\hat{x}) \\ \dot{e} &= \dot{x} - \dot{\hat{x}} \\ &= Ax - BK\hat{x} - A\hat{x} + BK\hat{x} - L(y - C\hat{x}) \\ &= (A - LC)e \end{split}$$

Putting these together gives

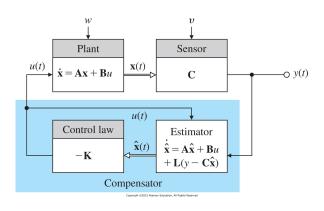
$$\begin{pmatrix} \dot{x} \\ \dot{e} \end{pmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix}$$

The poles of the closed-loop system are

$$\det(s - A + BK) \det(s - A + LC) = \alpha_c(s)\alpha_e(s) = 0$$

This is called the *separation principle*.

Controller Transfer Function



$$\dot{\hat{x}} = (A - LC - BK)\hat{x} + Ly \qquad \Rightarrow \qquad K(s) = \frac{U(s)}{Y(s)} = C(sI - A)^{-1}B + D$$

$$u = -K\hat{x}$$

$$= -K(sI - A + LC + BK)^{-1}L$$

Example

Consider the second-order system $G(s) = 1/s^2$

$$\dot{x} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Design a controller and estimator such that the closed-loop system has an overshoot of no more than 20% and a settling time of 4sec.

Specifications

- $M_p \leq 20\%$ overshoot $\to \zeta \geq 0.45$
- $T_s \le 4 \to \sigma = \zeta \omega_n \ge 1 \to \omega_n \ge 2.2$

Choose pole locations

$$\alpha_c(s) = s^2 + 2 \cdot 0.45 \cdot 2.2s + 2.2^2$$

Example - Design controller

Place poles by matching characteristic equations (could also use acker or place)

$$\alpha_c(s) = \det \left(sI - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} K_1 & K_2 \end{bmatrix} \right)$$

$$= \det \begin{bmatrix} s + K_1 & K_2 \\ -1 & s \end{bmatrix}$$

$$= (s + K_1)s + K_2 = s^2 + K_1s + K_2$$

$$= s^2 + 2 \cdot 0.45 \cdot 2.2s + 2.2^2$$

choose $K_2 = 5$ and $K_1 = 2$.

Example - Design Observer

Place estimator poles $5 \times$ faster than the controller poles

Controller poles have a decay rate of $\sigma=\zeta\omega_n=1$

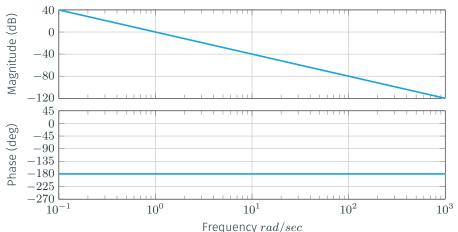
$$\alpha_e(s) = (s+5)^2$$

$$\det(sI - A + LC) = \det \begin{pmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \end{pmatrix}$$
$$= \det \begin{bmatrix} s & L_1 \\ -1 & s + L_2 \end{bmatrix}$$
$$= s(s + L_2) + L_1 = s^2 + L_2s + L_1$$
$$= s^2 + 10s + 25$$

Choose $L_1 = 25$ and $L_2 = 10$

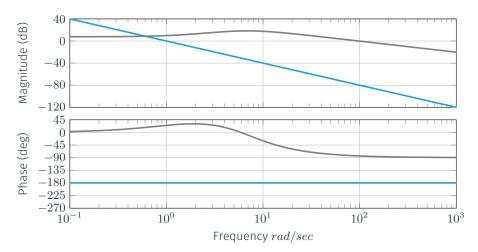
Example - Regulator

$$K(s) = -K(sI - A + LC + BK)^{-1}L = \frac{100s + 125}{s^2 + 12s + 50}$$



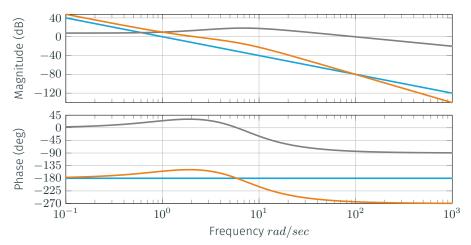
Example - Regulator

$$K(s) = -K(sI - A + LC + BK)^{-1}L = \frac{100s + 125}{s^2 + 12s + 50}$$



Example - Regulator

$$K(s) = -K(sI - A + LC + BK)^{-1}L = \frac{100s + 125}{s^2 + 12s + 50}$$



This is a lead compensator ($PM = 30^{\circ}$, GM = 12.5dB)

Reference Input

Where do we Add the Reference?

System and controller dynamic equations

System
$$\dot{x}=Ax+Bu$$

$$y=Cx$$
 Controller
$$\dot{\hat{x}}=(A-BK-LC)\hat{x}+Ly$$

$$u=-K\hat{x}$$

Addition of the reference as a linear input to the controller

$$\dot{\hat{x}} = (A - BK - LC)\hat{x} + Ly + Mr$$
$$u = -K\hat{x} + \bar{N}r$$

How to choose M and \bar{N} ?

Note that the reference cannot impact the pole locations. It does change the zeros

Option 1: Autonomous Estimator

Idea: Estimator is estimating the state of the system, and so should not be impacted by the reference

Select M and $ar{N}$ so that the state estimation error is independent of r

$$\begin{split} \dot{x}-\dot{\hat{x}} &= Ax+B[-K\hat{x}+\bar{N}r]-[(A-BK-LC)\hat{x}+Ly+Mr]\\ \dot{e} &= (A-LC)e+(B\bar{N}-M)r \end{split}$$

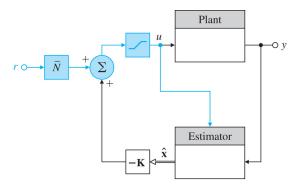
We can see that the reference has no impact if

$$B\bar{N} = M$$

Option 1: Autonomous Estimator

$$\begin{split} \dot{\hat{x}} &= (A - BK - LC)\hat{x} + Ly + B\bar{N}r \\ &= (A - LC)\hat{x} + Ly + Bu \\ u &= -K\hat{x} + \bar{N}r \end{split}$$

Note that the estimated state \hat{x} does not have the reference as an input



Pro: If the input is saturated, then it can be saturated for the estimator too.

Option 1: Selection of $ar{N}$

- The reference has no impact on the estimator
- The steady-state estimate equals the true state $\hat{x}_{ss} = x_{ss}$

Choose \bar{N} to ensure zero tracking error in steady-state

$$u = -K\hat{x} + (N_u + KN_x)r = -K\hat{x} + \bar{N}r$$

where N_u and N_x are chosen as

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} N_x \\ N_u \end{bmatrix}$$

Note: This is exactly as we saw in the full state-feedback case

Example

Consider the second-order system $G(s) = 1/s^2$

$$\dot{x} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Design a controller and estimator such that the closed-loop system has an overshoot of no more than 20% and a settling time of 4sec.

We previously computed a controller and observer

$$K = \begin{bmatrix} 2 & 5 \end{bmatrix} \qquad \qquad L = \begin{bmatrix} 25 \\ 10 \end{bmatrix}$$

Option 1: Autonomous Estimator

Select the gain \bar{N} so that we have zero steady-state error

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} N_x \\ N_u \end{bmatrix}$$

$$\bar{N} = KN_x + Nu = \begin{bmatrix} 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0 = 5$$

Select $M=B\bar{N}$

$$M = \begin{bmatrix} 1 \\ 0 \end{bmatrix} 5 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

Option 1: Autonomous Estimator

The entire system becomes

$$\begin{pmatrix} \dot{x} \\ \dot{\hat{x}} \end{pmatrix} = \begin{bmatrix} A & -BK \\ LC & A - BK - LC \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix} + \begin{bmatrix} B\bar{N} \\ B\bar{N} \end{bmatrix} r$$

$$= \begin{bmatrix} 0 & 0 & -2 & -5 \\ 1 & 0 & 0 & 0 \\ 0 & 25 & -2 & -20 \\ 0 & 10 & 1 & -10 \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix} + \begin{bmatrix} 5 \\ 0 \\ 5 \\ 0 \end{bmatrix} r$$

$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix}$$

Poles and Zeros

The poles and zeros of the closed-loop system are

$$Poles = \begin{pmatrix} -1 \pm 2i & -5 & -5 \end{pmatrix} \qquad Zeros = \begin{pmatrix} -5 & -5 \end{pmatrix}$$

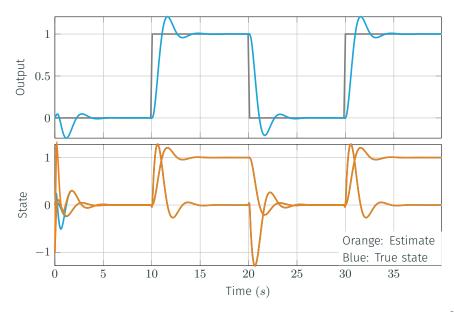
The reference adds zeros to cancel exactly the poles of the estimator

As a result, the system is now uncontrollable.

$$\operatorname{rank} \mathcal{C} = \operatorname{rank} \begin{bmatrix} 5 & -10 & -5 & 60 \\ 0 & 5 & -10 & -5 \\ 5 & -10 & -5 & 60 \\ 0 & 5 & -10 & -5 \end{bmatrix} = 2$$

This makes sense, as we have designed the reference to have no impact on the estimator.

Autonomous Estimator



Option 2: Tracking-error Estimator

Idea: Use only the tracking error e = r - y in the estimator

This form is used when only the error is measured

Choose M and \bar{N} such that the estimator only uses the error e=r-y

$$\begin{split} \dot{\hat{x}} &= (A - BK - LC)\hat{x} + Ly + Mr \\ u &= -K\hat{x} + \bar{N}r \end{split}$$

This is satisfied if $\bar{N}=0$ and M=-L

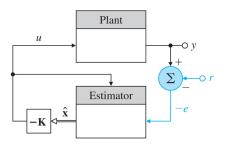
The controller becomes

$$\dot{\hat{x}} = (A - BK - LC)\hat{x} + L(y - r)$$
$$u = -K\hat{x}$$

Option 2: Tracking-error Estimator

$$\dot{\hat{x}} = (A - BK - LC)\hat{x} + L(y - r)$$

$$u = -K\hat{x}$$



Option 2: Tracking-error Estimator

The entire system becomes

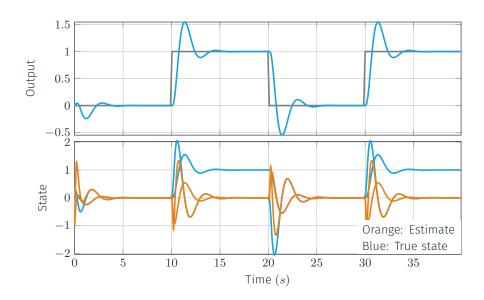
$$\begin{pmatrix} \dot{x} \\ \dot{\hat{x}} \end{pmatrix} = \begin{bmatrix} A & -BK \\ LC & A - BK - LC \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix} + \begin{bmatrix} 0 \\ -L \end{bmatrix} r$$

$$= \begin{bmatrix} 0 & 0 & -2 & -5 \\ 1 & 0 & 0 & 0 \\ 0 & 25 & -2 & -20 \\ 0 & 10 & 1 & -10 \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix} + \begin{bmatrix} 0 \\ 0 \\ -25 \\ -10 \end{bmatrix} r$$

$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix}$$

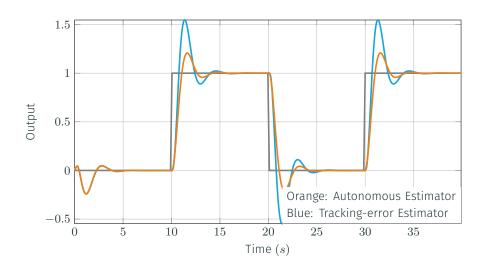
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix}$$

Tracking-Error Estimator



Note that the estimator is no longer estimating the state.

Comparison of Reference Methods



Tracking-error estimator tends to have larger overshoot.

Integral Control

Integral Control

Problem: No integrator in the control loop. Steady-state offset is likely.

Solution: Add an integrator

Define an artificial state that is the integral of the error

$$x_I(t) = \int_0^t e(au) d au$$
 where $e(t) = r(t) - y(t)$ and $\dot{x}_I(t) = e(t)$

Define the augmented system model to include the integral state

$$\begin{pmatrix} \dot{x} \\ \dot{x}_I \end{pmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{pmatrix} x \\ x_I \end{pmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{pmatrix} x \\ x_I \end{pmatrix}$$

Now design a controller using previous methods and in steady-state we have

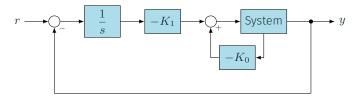
$$\dot{x}_I(t) = e(t) = 0$$

Structure of Integral Controllers

Controller will have the form

$$u = -\begin{bmatrix} K_0 & K_1 \end{bmatrix} \begin{pmatrix} x \\ x_I \end{pmatrix}$$

The resulting control structure is



Note that we've taken a different sign on the feedback loop here compared to the book to keep the standard loop.

$$G(s) = \frac{1}{s+3}$$

Design an offset-free controller with two poles at -5 and an estimator pole at -10.

$$G(s) = \frac{1}{s+3}$$

Design an offset-free controller with two poles at -5 and an estimator pole at -10.

State-space model

$$\dot{x} = -3x + u$$
$$y = x$$

$$G(s) = \frac{1}{s+3}$$

Design an offset-free controller with two poles at -5 and an estimator pole at -10.

State-space model

$$\dot{x} = -3x + u$$
$$y = x$$

Augment system dynamics

$$\begin{pmatrix} \dot{x} \\ \dot{x}_I \end{pmatrix} = \begin{bmatrix} -3 & 0 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} x \\ x_I \end{pmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$$

$$G(s) = \frac{1}{s+3}$$

Design an offset-free controller with two poles at -5 and an estimator pole at -10.

State-space model

$$\dot{x} = -3x + u$$
$$y = x$$

Augment system dynamics

$$\begin{pmatrix} \dot{x} \\ \dot{x}_I \end{pmatrix} = \begin{bmatrix} -3 & 0 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} x \\ x_I \end{pmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$$

Place poles at -5, -5

$$\det sI - A + BK = \det \begin{bmatrix} s+3+K_0 & K_1 \\ 1 & s \end{bmatrix} = (s+3+K_0)s - K_1 = s^2 + 10s + 25$$
 Controller is $K = \begin{bmatrix} K_0 & K_1 \end{bmatrix} = \begin{bmatrix} 7 & -25 \end{bmatrix}$

$$G(s) = \frac{1}{s+3}$$

Design an offset-free controller with two poles at -5 and an estimator pole at -10.

State-space model

$$\dot{x} = -3x + u$$

$$y = x$$

Place estimator poles

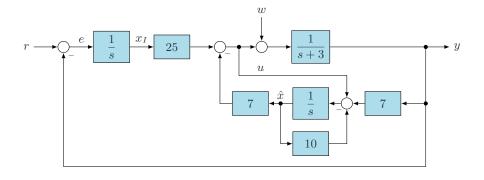
$$\det(sI - A + LC) = s + 3 + L = s + 10$$

Observer gain is L=7

Estimator dynamics

$$\dot{\hat{x}} = (A - LC)\hat{x} + Ly + Bu = -10\hat{x} + 7y + u$$

Example - Block Diagram



$$\begin{vmatrix} \dot{x} = -3x + u + w \\ u = -7\hat{x} + 25x_I \\ \dot{x}_I = r - x \\ \dot{\hat{x}} = -10\hat{x} + 7x + u \end{vmatrix} \qquad \begin{pmatrix} \dot{x} \\ \dot{x}_I \\ \dot{\hat{x}} \end{pmatrix}$$

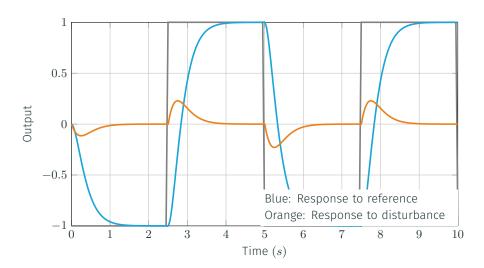
$$\begin{array}{c}
x = -3x + u + w \\
u = -7\hat{x} + 25x_I \\
\dot{x}_I = r - x \\
\dot{\hat{x}} = -10\hat{x} + 7x + u
\end{array}$$

$$\begin{vmatrix}
\dot{x} \\
\dot{x}_I \\
\dot{x}
\end{vmatrix} = \begin{bmatrix}
-3 & 25 & -7 \\
-1 & 0 & 0 \\
7 & 25 & -17
\end{bmatrix} \begin{pmatrix}
x \\
x_I \\
\hat{x}
\end{pmatrix} + \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} r + \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} w$$

Poles at (-10, -5, -5)

39

Example - Response



We have offset-free tracking and constant disturbance rejection.

Summary - Design Procedure

1 State-Feedback Design

Assume that the $\it state$ is $\it measured$, and design a $\it static$ control law $\it u=Kx$

$$\dot{x} = Ax + BKx$$

Problem: We can't measure x!

2 State Observer

Design a dynamic system to **estimate the state**

$$\dot{\hat{x}} = L\hat{x} + My + Nu$$

Design L, M and N so that $\hat{x} \sim x$

- **3** Combine controller and observer to provide a single, dynamic control law.
- 4 Add reference tracking.

Separation principle tells us that independent design of these elements is optimal.

Pole placement of estimators is *dual* to that of controllers.