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State Estimation

Problem: Our controller is a function of the state, but we don’t know the state.

Goal: Estimate the state from input and output measurements.

If & is our estimate of the state and we simulate the dynamics

%= A% + Bu

then & ~ x. Noise and model error will always cause the estimate to diverge.

Solution: Feedback u(t) System

x(t)

C

& = A% + Bu+ L(y — C%)

Model

(1)
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State Estimation Error Dynamic

Dynamics representing error between the true state and the estimated state is
b=F—1
= Az + Bu— A% — Bu— L(y — Ct)
=A(x — ) — L(Cx — C)
=(A—-LC)e

Idea: Choose L so that the error system is stable and & — z

How: Use pole placement exactly as in the control case



Observer Canonical Form

Observer Canonical Form

—a1 1 0 b1
T = —as 0 1| =+ b2 u
—as 0 0 b3

y=[1 0 o]x

Error dynamics are

—ai 1 0 L1 —a; — L1 1 0
A=LC=|-a 0 1|~ |L| |1 0 0]=|-a2—L 0 1
—as 0 0 L3 —as — L3 0 0

with the simple characteristic equation

det(sI — A+ LC) = s* + (a1 + L1)s”> 4 (a2 + La2)s + (a3 4+ L3) = 0

Observer poles can be placed easily if system can be put in observer canonical form



Pole placement in observer canonical form

—ai 1 0 L1 —a1 — L1 1 0
A—LC=|-az 0 1| - |L, [1 0 o]: —ap—ILs 0 1
—az3 0 O L3 —as3—Ls 0 O

det(sI — A+ LC) = s* + (a1 + L1)s> + (a2 + L2)s + (as + L3)
Pole placement in control canonical form

—a1 — K1 —az— Kz —a3— K3
A— BK = 1 0 0
0 1 0

det(sI — A+ KB) = s" + (a1 + K1)s" " + (a2 + K2)s" 2 + - - + (a3 + K3)

Observer pole placement is identical to controller pole placement if we replace
(A, B) with (AT,CT)



Conversion to Observer Canonical Form

75> +125s+3 Y

G = = — = =
(s) s3+2s2+5s5+2 U

Divide by s* and solve for Y’

Y =5 H(TU = 2Y) 4+ s (12U = 5Y) + s *(3U — 2Y)

X1
sX1 =TU —2Y + s ' (12U — 5Y) + s 2(3U — 2Y)
X2
sXo = 12U — 5Y + s '(3U — 2Y)
N—_——

X3

SX:; =3U —-2Y



Conversion to Observer Canonical Form

72+ 125+ 3 Y

)= S e a2 O

Take inverse Laplace transform

y=1a1

T1 = Tu+ 2y + x2 = Tu+ 221 + 22
X2:12u—5y+x3 = 12u — bx1 + x3
X3 =3u—2y = 3u — 2z

Putting this together, we get observer canonical form

2 1 0 7
= |-5 0 1|lz+ |12|u
-2 0 0 3

y:[1 0 o]x



Pole Placement

Ackermann’s Estimator Formula

Goal Choose observer gain L for the system (A, C) so that the closed-loop system
é = (A — LC)e has the characteristic equation ae(s)

0
L=a.(4)0!
1
where ae(A) is the desired characteristic equation evaluated at the matrix A
ac(A) = A"+ LA + B AP 4+ B

O is the observability matrix, which plays the same role as the controllability matrix

C

CA
0=

cA



Observability

Consider the system

which has the transfer function G(s) = .

The states are the position and the velocity, but we're only measuring the velocity.

— Impossible to estimate the position and therefore this system is unobservable

An LTI system is observable if and only if we can place the poles of the error
system, which can be done only if O is invertible

LTI system (A, C) is observerable if and only if the observability matrix is full rank

rank O =n



Duality and Matlab

The duality between controller pole placement and observer pole placement
means that we can use the same tools

K = acker(A, B, pc)
K = place(A, B, pc)

Lt = acker(A', C', pe)
Lt = place(A', C', pe)
L = Lt'

where pc is the list of desired controller poles, and pe is the list of desired
estimator poles



Pole Selection

Estimator pole selection is a tradeoff between sensor noise and transient response

- Faster estimator — more sensor noise passed to controller

- Slower estimator — slower transient response

Rule of thumb:  Estimator poles should be faster than the controller poles by about
2-6 times



Design estimator for




Design estimator for

Place the observer poles about 2 — 3x faster than the dominant poles of the system
Amax(A) = —0.18

Place two observer poles at 0.5

L = acker(A', C', -[0.5, 0.5])

=



State

State

Estimator poles at (—0.5,—0.5)

Estimator poles at (=5, —5)

Blue : True state

15 20 25
Time (s)

Orange: Estimated state
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Example - Impact of Measurement Noise

State

State

Estimator poles at (—0.5, —0.5)

Estimator poles at (=5, —5)

15
Time

Blue : True state

20 25

(s)

Orange: Estimated state

30



Combining Control and Estimation

w v
! J
Plant Sensor
u@w x=Ax+Bu L C o y(®)
u(t) v
Control law Estimator

X0 | 2= A%

K (D | x=AX+ BAu

+L(y— Cx)

Compensator

62015 Pearson Education, Al Rights Reserved

What is the overall system?



Combining Control and Estimation

Full-state feedback controller

&= Az — BK& &= Az — BK% + L(y — C%)
= Az — BK(z —e) b=i—1
where e = z — & = Az — BK%& — At + BK& — L(y — C#%)
=(A—-LQO)e

Putting these together gives

(-

The poles of the closed-loop system are

det(s — A+ BK)det(s — A+ LC) = ac(s)ac(s) =0

A—- BK BK
0 A-LC

This is called the separation principle.

16



Controller Transfer Function

w v
{ !
Plant Sensor
u(®) x=Ax+ Bu ={>X(t) C 0 (1)
u(r) }
Control law Estimator
X0 | 2=Az
K (D) | x=Ax+ BAM
+L(y— Cx)

Compensator

i=(A-LC-BK)i+Ly = K(s):y(s):(;(inA)le+D

u=-Kz = —K(sI — A+ LC+ BK)™ 'L



Consider the second-order system G(s) = 1/s?

1
0

0 0
1 0

=

= x4+ u

Design a controller and estimator such that the closed-loop system has an over-
shoot of no more than 20% and a settling time of 4sec.

Specifications

- M, < 20% overshoot — ¢ > 0.45
T <4 —o0=Cwn >1—w, >22

Choose pole locations

ac(s) = s* +2-0.45-2.25 4+ 2.2°



Example - Design controller

Place poles by matching characteristic equations (could also use acker or place)

0 0 1
ac(s) = det (51— |:1 0 + 0 [Kl K2}>
= det s+ K KQ}
-1 s

:(S+K1)S+K2:SQ+K18+K2
=52 42.0.45-2.25 + 2.2

choose Ko =5 and K1 = 2.



Example - Design Observer

Place estimator poles 5x faster than the controller poles

Controller poles have a decay rate of 0 = Cw, = 1

ac(s) = (s +5)°

0
s

Ly

—|—L2

det(sI — A+ LC) = det ( {8

|00

1 0
S L1
—1 8+L2

b 1)

= det

:S(S+L2)+L1:SQ+LQS+L1
=%+ 10s + 25

Choose Ly =25 and Ly = 10

20



Example - Regulator

100s + 125

— _ -1 —_ 7 7
K(s)=—K(sl —A+LC+BK) 'L 2+ 125450
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Example - Regulator
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Example - Regulator

_ 100s + 125
K(s)=—-K(sI —A+LC+BK) 'L = """
(5) (s +LC+ BK) s2+ 125 + 50
a 40 T \\\\\‘ T \\\\\‘ T \\\\\‘ T T 1T
= 0F |
()
ER S |
S 80t :
S —120}

Phase (deg
1
oM == |
I DN OO W O [
OO T OoO Urto Ot
I
|

L N . TT:T\\“T*~7—F*-_A ]

10° 10 102 10°
Frequency rad/sec

H
9
.

This is a lead compensator (PM = 30°, GM = 12.5dB)
21



Reference Input




Where do we Add the Reference?

System and controller dynamic equations

System & = Az + Bu
y=Czx
Controller &= (A—-BK - LC)i + Ly
u=—-Kz

Addition of the reference as a linear input to the controller
i=(A—BK —LC)Z&+ Ly + Mr

u=—Ki+ Nr

How to choose M and N?

Note that the reference cannot impact the pole locations. It does change the zeros



Option 1: Autonomous Estimator

Idea: Estimator is estimating the state of the system, and so should not be im-
pacted by the reference

Select M and N so that the state estimation error is independent of

i —i = Az + B[-Ki + Nr] — [(A — BK — LC)& + Ly + Mr]
¢=(A-LC)e+ (BN — M)r

We can see that the reference has no impact if

BN =M

23



Option 1: Autonomous Estimator

&= (A—BK — LC)2+ Ly+ BNr
= (A-LC)Z + Ly + Bu
u=—K&+ Nr

Note that the estimated state 2 does not have the reference as an input

Plant

Estimator

X
—K — le—

Pro: If the input is saturated, then it can be saturated for the estimator too. "



Option 1: Selection of N

- The reference has no impact on the estimator

- The steady-state estimate equals the true state Zss = xss

Choose N to ensure zero tracking error in steady-state

u=—K&+ (Ny+ KNg)r = —Ki+ Nr

It

Note : This is exactly as we saw in the full state-feedback case

where N, and N, are chosen as

A B
¢ D

25



Consider the second-order system G(s) = 1/s?

0 0
1 0

=

1

:c—i—o

= u

Design a controller and estimator such that the closed-loop system has an over-
shoot of no more than 20% and a settling time of 4sec.

We previously computed a controller and observer

K= {2 5} L= ﬁg}

26



Option 1: Autonomous Estimator

Select the gain N so that we have zero steady-state error

-1

- 1
A B = 2 g 0 8 = (1) Ne
C D 1| o N,
01 0 1 0
) 0
N:KNMLNuz[z 5] L +o=5

Select M = BN

27



Option 1: Autonomous Estimator

The entire system becomes

@ [ A _BK ©\ BN
. e _ T
Z LC A-BK-LC|\z BN
(0 0o -2 =5 5
1 0 0 0 x 0
= R + r
0 25 —2 —20| \2 5
0 10 1 -10 0

28



Poles and Zeros

The poles and zeros of the closed-loop system are
Poles = (—1 +2i -5 —5) Zeros = (—5 —5>

The reference adds zeros to cancel exactly the poles of the estimator

As a result, the system is now uncontrollable.

rank C = rank =2

This makes sense, as we have designed the reference to have no impact on the
estimator.

29



Autonomous Estimator
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Option 2: Tracking-error Estimator

Idea: Use only the tracking error e = r — y in the estimator
This form is used when only the error is measured
Choose M and N such that the estimator only uses the errore =r —y

i=(A—BK — LC)Z + Ly + Mr
u=—Ki+ Nr

This is satisfied if N =0and M = —L

The controller becomes

&= (A—BK—LC)¢+ L(y—r)
u=—Kz

31



Option 2: Tracking-error Estimator

i =(A—BK—-LC)2+L(y—r)

u=—Kz
Plant
u
!
Estimator
X
LK k=

32



Option 2: Tracking-error Estimator

The entire system becomes

& [ 4 _BK #\ |0
i LC A—BK—LC| \& "

0o 0 -2 =5 0
1 0 0 0 T 0
= |+ r
0 25 -2 =20| \z —25
0 10 1 -10 —10

33



Tracking-Error Estimator

1.5 \/\ ‘/\ -~
1 ./ A\
-
>
S 05F ~
>
o
0 — VAN N
\V4 \/
—0.5 & \ | | | | \ | o
2

State
o

Orange: Estimate
| Blue: True state
0 5 10 15 20 25 30 35

Time (s)

Note that the estimator is no longer estimating the state. 34



Comparison of Reference Methods

15F T T T T T T

0.5

Output

0 o \IA' |
\/ Orange: Autonomous Estimator
_05| | | | .| Blue: Tracking-error Estimator

0 5 10 15 20 25 30 35
Time (s)

Tracking-error estimator tends to have larger overshoot.
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Integral Control




Integral Control

Problem: No integrator in the control loop. Steady-state offset is likely.
Solution:  Add an integrator

Define an artificial state that is the integral of the error
t
zr(t) = / e(T)dr where e(t) = r(t) — y(¢t) and &1 (t) = e(t)
0

Define the augmented system model to include the integral state
A 0

ORERIGE
o=l d ()

Now design a controller using previous methods and in steady-state we have

B
0

0

u+1

r

36



Structure of Integral Controllers

Controller will have the form

w=— [Ko Kl] (;)

The resulting control structure is

1

T—»O—» — - — K1 —»O

+

System

- P L
— Ko

1

Note that we've taken a different sign on the feedback loop here compared to the

book to keep the standard loop.

37



Gls) = s+3

Design an offset-free controller with two poles at —5 and an estimator pole at —10.

38



Gls) = s+3

Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model

38



G(s) =
(5)=173
Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model

Augment system dynamics

)=l )

38



G(s) =
(5)=173
Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model

Augment system dynamics

)=l )

Place poles at —5, —5

S+3+K0

det sI — A+ BK = det i

K
1] = (s+3+ Ko)s — K1 =s° +10s + 25
S

Controlleris K = [Ko KI] = [7 725]

38



G(s) =
(5)=173
Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model

Place estimator poles

det(sI] — A+ LC)=s+3+L=s+10

Observergainis L =7

Estimator dynamics

2=(A-LC)i+ Ly+Bu=—102 + Ty +u

38



Example - Block Diagram

w

- T
r—O- L P s |0
a s s+ 3
U
=N
7 ‘L i m@an B
10 J
r=—-3r+u-+w
W= —T# + 25z, T -3 25 -7 T 0 1
) Ty -1 0 0 xr |+ |17+ |0] w
rr=rer & 7 025 —17| \ 0 0

=—-102+ Tz +u

Poles at (—10,—5, —5)

39



Example - Response

1
0.5 - ]
o
>
= 0
>
o
—0.5 |- -
Blue: Response to reference
. ‘ ‘ ‘ Orange: Response to disturbance
0 1 2 3 4 5 6 7 8 9 10

Time (s)

We have offset-free tracking and constant disturbance rejection.



Summary - Design Procedure

1 State-Feedback Design 2 State Observer

Assume that the state is measured, Design a dynamic system to esti-
and design a static control law u = mate the state
Kx

T = Az + BKz )
Design L, M and N sothat & ~ x

Problem : We can’t measure z!

@ Combine controller and observer to provide a single, dynamic control law.

@ Add reference tracking.
Separation principle tells us that independent design of these elements is optimal.

Pole placement of estimators is dual to that of controllers.
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