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State Estimation

Problem: Our controller is a function of the state, but we don’t know the state.

Goal: Estimate the state from input and output measurements.

If x̂ is our estimate of the state and we simulate the dynamics

˙̂x = Ax̂+Bu

then x̂ ≈ x. Noise and model error will always cause the estimate to diverge.

Solution: Feedback

˙̂x = Ax̂+Bu+ L(y − Cx̂)

u(t) System C

Model C

L

y(t)

+

−

x(t)

x̂(t) ŷ(t)
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Observers



State Estimation Error Dynamic

Dynamics representing error between the true state and the estimated state is

ė = ẋ− ˙̂x

= Ax+Bu−Ax̂−Bu− L(y − Cx̂)

= A(x− x̂)− L(Cx− Cx̂)

= (A− LC)e

Idea: Choose L so that the error system is stable and x̂ → x

How: Use pole placement exactly as in the control case
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Observer Canonical Form

Observer Canonical Form

ẋ =

−a1 1 0

−a2 0 1

−a3 0 0

x+

b1b2
b3

u

y =
[
1 0 0

]
x

Error dynamics are

A− LC =

−a1 1 0

−a2 0 1

−a3 0 0

−

L1

L2

L3

[1 0 0
]
=

−a1 − L1 1 0

−a2 − L2 0 1

−a3 − L3 0 0


with the simple characteristic equation

det(sI −A+ LC) = s3 + (a1 + L1)s
2 + (a2 + L2)s+ (a3 + L3) = 0

Observer poles can be placed easily if system can be put in observer canonical form
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Duality

Pole placement in observer canonical form

A− LC =

−a1 1 0

−a2 0 1

−a3 0 0

−

L1

L2

L3

[1 0 0
]
=

−a1 − L1 1 0

−a2 − L2 0 1

−a3 − L3 0 0


det(sI −A+ LC) = s3 + (a1 + L1)s

2 + (a2 + L2)s+ (a3 + L3)

Pole placement in control canonical form

A−BK =

−a1 −K1 −a2 −K2 −a3 −K3

1 0 0

0 1 0


det(sI −A+KB) = sn + (a1 +K1)s

n−1 + (a2 +K2)s
n−2 + · · ·+ (a3 +K3)

Observer pole placement is identical to controller pole placement if we replace
(A,B) with (A⊺, C⊺)
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Conversion to Observer Canonical Form

G(s) =
7s2 + 12s+ 3

s3 + 2s2 + 5s+ 2
=

Y

U

Divide by s3 and solve for Y

Y = s−1(7U − 2Y ) + s−2(12U − 5Y ) + s−3(3U − 2Y )︸ ︷︷ ︸
X1

sX1 = 7U − 2Y + s−1(12U − 5Y ) + s−2(3U − 2Y )︸ ︷︷ ︸
X2

sX2 = 12U − 5Y + s−1(3U − 2Y )︸ ︷︷ ︸
X3

sX3 = 3U − 2Y
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Conversion to Observer Canonical Form

G(s) =
7s2 + 12s+ 3

s3 + 2s2 + 5s+ 2
=

Y

U

Take inverse Laplace transform

y = x1

ẋ1 = 7u+ 2y + x2 = 7u+ 2x1 + x2

Ẋ2 = 12u− 5y + x3 = 12u− 5x1 + x3

Ẋ3 = 3u− 2y = 3u− 2x1

Putting this together, we get observer canonical form

ẋ =

 2 1 0

−5 0 1

−2 0 0

x+

 7

12

3

u

y =
[
1 0 0

]
x
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Pole Placement

Ackermann’s Estimator Formula
Goal Choose observer gain L for the system (A,C) so that the closed-loop system
ė = (A− LC)e has the characteristic equation αe(s)

L = αe(A)O−1


0

0
...
1


where αe(A) is the desired characteristic equation evaluated at the matrix A

αe(A) = An + β1A
n−1 + β2A

n−2 + · · ·+ βn

O is the observability matrix, which plays the same role as the controllability matrix

O =


C

CA
...

CAn−1


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Observability

Consider the system (
ẋ

ẍ

)
=

[
0 1

0 0

](
x

ẋ

)
+

[
0

1

]
u

y =
[
0 1

](x
ẋ

)

which has the transfer function G(s) = 1
s2
.

The states are the position and the velocity, but we’re only measuring the velocity.

→ Impossible to estimate the position and therefore this system is unobservable

An LTI system is observable if and only if we can place the poles of the error
system, which can be done only if O is invertible

LTI system (A,C) is observerable if and only if the observability matrix is full rank

rankO = n
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Duality and Matlab

The duality between controller pole placement and observer pole placement
means that we can use the same tools

K = acker(A, B, pc)
K = place(A, B, pc)

Lt = acker(A', C', pe)
Lt = place(A', C', pe)
L = Lt'

where pc is the list of desired controller poles, and pe is the list of desired
estimator poles
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Pole Selection

Estimator pole selection is a tradeoff between sensor noise and transient response

• Faster estimator→ more sensor noise passed to controller
• Slower estimator→ slower transient response

Rule of thumb: Estimator poles should be faster than the controller poles by about
2-6 times
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Example

Design estimator for

ẋ =

[
−1 1.5

1 −2

]
x+

[
1

0

]
u

y =
[
1 0

]
x

Place the observer poles about 2− 3× faster than the dominant poles of the system

λmax(A) = −0.18

Place two observer poles at 0.5

L = acker(A', C', -[0.5, 0.5])

L =

[
−2

2.5

]
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ẋ =

[
−1 1.5

1 −2

]
x+

[
1

0

]
u

y =
[
1 0

]
x

Place the observer poles about 2− 3× faster than the dominant poles of the system

λmax(A) = −0.18

Place two observer poles at 0.5

L = acker(A', C', -[0.5, 0.5])

L =

[
−2

2.5

]

12



Example
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Example - Impact of Measurement Noise
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Combining Control and Estimation

What is the overall system?
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Combining Control and Estimation

Full-state feedback controller

ẋ = Ax−BKx̂

= Ax−BK(x− e)

where e = x− x̂

Observer

˙̂x = Ax̂−BKx̂+ L(y − Cx̂)

ė = ẋ− ˙̂x

= Ax−BKx̂−Ax̂+BKx̂− L(y − Cx̂)

= (A− LC)e

Putting these together gives(
ẋ

ė

)
=

[
A−BK BK

0 A− LC

]

The poles of the closed-loop system are

det(s−A+BK) det(s−A+ LC) = αc(s)αe(s) = 0

This is called the separation principle.
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Controller Transfer Function

˙̂x = (A− LC −BK)x̂+ Ly

u = −Kx̂

⇒ K(s) =
U(s)

Y (s)
= C(sI −A)−1B +D

= −K(sI −A+ LC +BK)−1L
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Example

Consider the second-order system G(s) = 1/s2

ẋ =

[
0 0

1 0

]
x+

[
1

0

]
u

y =
[
0 1

]
Design a controller and estimator such that the closed-loop system has an over-
shoot of no more than 20% and a settling time of 4sec.

Specifications

• Mp ≤ 20% overshoot→ ζ ≥ 0.45

• Ts ≤ 4 → σ = ζωn ≥ 1 → ωn ≥ 2.2

Choose pole locations

αc(s) = s2 + 2 · 0.45 · 2.2s+ 2.22
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Example - Design controller

Place poles by matching characteristic equations (could also use acker or place)

αc(s) = det

(
sI −

[
0 0

1 0

]
+

[
1

0

] [
K1 K2

])

= det

[
s+K1 K2

−1 s

]
= (s+K1)s+K2 = s2 +K1s+K2

= s2 + 2 · 0.45 · 2.2s+ 2.22

choose K2 = 5 and K1 = 2.
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Example - Design Observer

Place estimator poles 5× faster than the controller poles

Controller poles have a decay rate of σ = ζωn = 1

αe(s) = (s+ 5)2

det(sI −A+ LC) = det

([
s 0

0 s

]
−

[
0 0

1 0

]
+

[
L1

L2

] [
0 1

])

= det

[
s L1

−1 s+ L2

]
= s(s+ L2) + L1 = s2 + L2s+ L1

= s2 + 10s+ 25

Choose L1 = 25 and L2 = 10
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Example - Regulator

K(s) = −K(sI −A+ LC +BK)−1L =
100s+ 125

s2 + 12s+ 50
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This is a lead compensator (PM = 30◦, GM = 12.5dB)
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Reference Input



Where do we Add the Reference?

System and controller dynamic equations

System ẋ = Ax+Bu

y = Cx

Controller ˙̂x = (A−BK − LC)x̂+ Ly

u = −Kx̂

Addition of the reference as a linear input to the controller

˙̂x = (A−BK − LC)x̂+ Ly +Mr

u = −Kx̂+ N̄r

How to chooseM and N̄?

Note that the reference cannot impact the pole locations. It does change the zeros
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Option 1: Autonomous Estimator

Idea: Estimator is estimating the state of the system, and so should not be im-
pacted by the reference

SelectM and N̄ so that the state estimation error is independent of r

ẋ− ˙̂x = Ax+B[−Kx̂+ N̄r]− [(A−BK − LC)x̂+ Ly +Mr]

ė = (A− LC)e+ (BN̄ −M)r

We can see that the reference has no impact if

BN̄ = M
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Option 1: Autonomous Estimator

˙̂x = (A−BK − LC)x̂+ Ly +BN̄r

= (A− LC)x̂+ Ly +Bu

u = −Kx̂+ N̄r

Note that the estimated state x̂ does not have the reference as an input

Pro: If the input is saturated, then it can be saturated for the estimator too. 24



Option 1: Selection of N̄

• The reference has no impact on the estimator
• The steady-state estimate equals the true state x̂ss = xss

Choose N̄ to ensure zero tracking error in steady-state

u = −Kx̂+ (Nu +KNx)r = −Kx̂+ N̄r

where Nu and Nx are chosen as[
A B

C D

]−1 [
0

1

]
=

[
Nx

Nu

]

Note : This is exactly as we saw in the full state-feedback case
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Example

Consider the second-order system G(s) = 1/s2

ẋ =

[
0 0

1 0

]
x+

[
1

0

]
u

y =
[
0 1

]
Design a controller and estimator such that the closed-loop system has an over-
shoot of no more than 20% and a settling time of 4sec.

We previously computed a controller and observer

K =
[
2 5

]
L =

[
25

10

]
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Option 1: Autonomous Estimator

Select the gain N̄ so that we have zero steady-state error

[
A B

C D

]−1 [
0

1

]
=

0 0 1

1 0 0

0 1 0


−1 00

1

 =

01
0

 =

[
Nx

Nu

]

N̄ = KNx +Nu =
[
2 5

] [0
1

]
+ 0 = 5

SelectM = BN̄

M =

[
1

0

]
5 =

[
5

0

]
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Option 1: Autonomous Estimator

The entire system becomes(
ẋ
˙̂x

)
=

[
A −BK

LC A−BK − LC

](
x

x̂

)
+

[
BN̄

BN̄

]
r

=


0 0 −2 −5

1 0 0 0

0 25 −2 −20

0 10 1 −10


(
x

x̂

)
+


5

0

5

0

 r

y =
[
C 0

](x
x̂

)

=
[
0 1 0 0

](x
x̂

)
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Poles and Zeros

The poles and zeros of the closed-loop system are

Poles =
(
−1± 2i −5 −5

)
Zeros =

(
−5 −5

)
The reference adds zeros to cancel exactly the poles of the estimator

As a result, the system is now uncontrollable.

rank C = rank


5 −10 −5 60

0 5 −10 −5

5 −10 −5 60

0 5 −10 −5

 = 2

This makes sense, as we have designed the reference to have no impact on the
estimator.

29



Autonomous Estimator
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Option 2: Tracking-error Estimator

Idea: Use only the tracking error e = r − y in the estimator

This form is used when only the error is measured

ChooseM and N̄ such that the estimator only uses the error e = r − y

˙̂x = (A−BK − LC)x̂+ Ly +Mr

u = −Kx̂+ N̄r

This is satisfied if N̄ = 0 andM = −L

The controller becomes

˙̂x = (A−BK − LC)x̂+ L(y − r)

u = −Kx̂
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Option 2: Tracking-error Estimator

˙̂x = (A−BK − LC)x̂+ L(y − r)

u = −Kx̂
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Option 2: Tracking-error Estimator

The entire system becomes(
ẋ
˙̂x

)
=

[
A −BK

LC A−BK − LC

](
x

x̂

)
+

[
0

−L

]
r

=


0 0 −2 −5

1 0 0 0

0 25 −2 −20

0 10 1 −10


(
x

x̂

)
+


0

0

−25

−10

 r

y =
[
C 0

](x
x̂

)

=
[
0 1 0 0

](x
x̂

)
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Tracking-Error Estimator
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Note that the estimator is no longer estimating the state. 34



Comparison of Reference Methods
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Tracking-error estimator tends to have larger overshoot.
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Integral Control

Problem: No integrator in the control loop. Steady-state offset is likely.
Solution: Add an integrator

Define an artificial state that is the integral of the error

xI(t) =

∫ t

0

e(τ)dτ where e(t) = r(t)− y(t) and ẋI(t) = e(t)

Define the augmented system model to include the integral state(
ẋ

ẋI

)
=

[
A 0

−C 0

](
x

xI

)
+

[
B

0

]
u+

[
0

1

]
r

y =
[
C 0

]( x

xI

)

Now design a controller using previous methods and in steady-state we have

ẋI(t) = e(t) = 0
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Structure of Integral Controllers

Controller will have the form

u = −
[
K0 K1

]( x

xI

)

The resulting control structure is

r
1

s
−K1 System y

−K0

+−

Note that we’ve taken a different sign on the feedback loop here compared to the
book to keep the standard loop.
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Example

G(s) =
1

s+ 3

Design an offset-free controller with two poles at −5 and an estimator pole at −10.

State-space model

ẋ = −3x+ u

y = x

Augment system dynamics(
ẋ

ẋI

)
=

[
−3 0

−1 0

](
x

xI

)
+

[
1

0

]
u+

[
0

1

]
r

Place poles at −5,−5

det sI −A+BK = det

[
s+ 3 +K0 K1

1 s

]
= (s+ 3 +K0)s−K1 = s2 + 10s+ 25

Controller is K =
[
K0 K1

]
=
[
7 −25

]
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Example

G(s) =
1

s+ 3

Design an offset-free controller with two poles at −5 and an estimator pole at −10.

State-space model

ẋ = −3x+ u

y = x

Place estimator poles

det(sI −A+ LC) = s+ 3 + L = s+ 10

Observer gain is L = 7

Estimator dynamics

˙̂x = (A− LC)x̂+ Ly +Bu = −10x̂+ 7y + u
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Example - Block Diagram

r
1

s
25

1

s+ 3
y

−

1

s

10

77

−

u

w

x̂
−

e xI

ẋ = −3x+ u+ w

u = −7x̂+ 25xI

ẋI = r − x

˙̂x = −10x̂+ 7x+ u


 ẋ

ẋI

˙̂x

 =

−3 25 −7

−1 0 0

7 25 −17


 x

xI

x̂

+

01
0

 r +

10
0

w

Poles at (−10,−5,−5) 39



Example - Response

0 1 2 3 4 5 6 7 8 9 10
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We have offset-free tracking and constant disturbance rejection.
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Summary - Design Procedure

1 State-Feedback Design

Assume that the state ismeasured,
and design a static control law u =

Kx

ẋ = Ax+BKx

Problem : We can’t measure x!

2 State Observer

Design a dynamic system to esti-
mate the state

˙̂x = Lx̂+My +Nu

Design L,M and N so that x̂ ∼ x

3 Combine controller and observer to provide a single, dynamic control law.

4 Add reference tracking.

Separation principle tells us that independent design of these elements is optimal.

Pole placement of estimators is dual to that of controllers.
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